Neuronal nitric oxide synthase and ischemia-induced neurogenesis.
نویسندگان
چکیده
Nitric oxide (NO) influences infarct size after focal cerebral ischemia and also regulates neurogenesis in the adult brain. These observations suggest that therapeutic approaches to stroke that target NO signaling may provide neuroprotection and also enhance brain repair through cell replacement. However, ischemic injury and neurogenesis are both affected differently depending on which isoform of NO synthase is the source of NO. In addition, ischemia itself stimulates neurogenesis, and ischemia-induced neurogenesis may be regulated differently than neurogenesis in nonischemic brain. To determine how neuronal NO synthase affects ischemia-induced neurogenesis, transient focal cerebral ischemia was produced in wild-type mice and in knockout mice lacking neuronal NO synthase, and BrdU incorporation and doublecortin immunoreactivity were measured in the principal neuroproliferative regions of the adult brain. Knockout of neuronal NO synthase reduced infarct size and increased both basal and ischemia-induced neurogenesis, suggesting that NO from this source is an inhibitory regulator of neurogenesis in the ischemic brain. 7-Nitroindazole, an NO synthase inhibitor that preferentially affects the neuronal isoform, also increased neurogenesis in rats when administered by the intracerebroventricular route. Selective inhibition of neuronal NO synthase may have the potential to both reduce infarct size and enhance neurogenesis in stroke.
منابع مشابه
Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملContribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats
Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...
متن کاملExpression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus.
The generation of new neurons in the adult mammalian hippocampus is thought to play a role in repairing the brain after injury. Here, we show that 7 d after focal cerebral ischemia, newly divided cells in the dentate gyrus of adult rats increased to approximately sevenfold, compared with sham controls. In the same area, this enhanced dentate neurogenesis was associated with activation of induci...
متن کاملThe Effect of Dexamethasone on Expression of Inducible Nitric Oxide Synthase Gene During Liver Warm Ischemia-reperfusion in Rat
Background: Liver ischemia / reperfusion Injury (IRI) is one of the major causes of liver failure during various types of liver surgery, trauma and infections. The present study investigates the effect of dexsamethasone on the liver injury and inducible nitric oxide synthase gene expression during hepatic warm ischemia/reperfusion in rats. Materials and Methods: 24 male Wistar rats (200-250 g)...
متن کاملNeuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis.
Increasing evidence suggests that depression may be associated with a lack of hippocampal neurogenesis. It is well established that neuronal nitric oxide synthase (nNOS)-derived NO exerts a negative control on the hippocampal neurogenesis. Using genetic and pharmacological methods, we investigated the roles of nNOS in depression induced by chronic mild stress (CMS) in mice. Hippocampal nNOS ove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 25 4 شماره
صفحات -
تاریخ انتشار 2005